3 research outputs found

    Comparative Analysis of Location Management Schemes in Wireless ATM Networks

    Get PDF
    Mobility is the cornerstone of wireless networks. Supporting mobility requires some form of tracking to locate mobile terminals within the network. In the wireline ATM network, the terminal is fixed and the terminal is located by identifying the terminal and following the routing information provided at each switch along the path. As terminals become mobile, the path to the mobile becomes dynamic; the terminal and the path are no longer synonymous. Signalling traffic incurred in tracking mobile users and delivering enhanced services causes an additional load in the Wireless ATM (WArM) network. Efficient database and location management schemes are needed to meet the challenges from high density and mobility of users, and various service scenarios. In this thesis the three "natural" Location Management Strategies, i.e., Timer-Based, Location Area Based and Movement Based are studied and analysed for a W ATM network. The model used for depicting user motion and call arrival is Brownian motion with drift process and Poisson arrival process, respectively. The Timer-Based location management strategy is one in which the user updates its location periodically after an "optimum" interval of time. This optimum interval of time is based upon the user's mobility and call arrival characteristics and is therefore best suited for that particular mobile. In the Adaptive Location Area Based strategy, the user updates its location on each LA boundary crossing. The size of the LA changes according to the user' s mobility characteristics. The objective is to minimise the combined average signalling cost of both paging and registration for each individual mobile user such that the overall system-wide signalling cost for location tracking can be minimised

    A combined 3D-QSAR and docking studies for the In-silico prediction of HIV-protease inhibitors

    Get PDF
    BACKGROUND: Tremendous research from last twenty years has been pursued to cure human life against HIV virus. A large number of HIV protease inhibitors are in clinical trials but still it is an interesting target for researchers due to the viral ability to get mutated. Mutated viral strains led the drug ineffective but still used to increase the life span of HIV patients. RESULTS: In the present work, 3D-QSAR and docking studies were performed on a series of Danuravir derivatives, the most potent HIV- protease inhibitor known so far. Combined study of 3D-QSAR was applied for Danuravir derivatives using ligand-based and receptor-based protocols and generated models were compared. The results were in good agreement with the experimental results. Additionally, docking analysis of most active 32 and least active 46 compounds into wild type and mutated protein structures further verified our results. The 3D-QSAR and docking results revealed that compound 32 bind efficiently to the wild and mutated protein whereas, sufficient interactions were lost in compound 46. CONCLUSION: The combination of two computational techniques would helped to make a clear decision that compound 32 with well inhibitory activity bind more efficiently within the binding pocket even in case of mutant virus whereas compound 46 lost its interactions on mutation and marked as least active compound of the series. This is all due to the presence or absence of substituents on core structure, evaluated by 3D-QSAR studies. This set of information could be used to design highly potent drug candidates for both wild and mutated form of viruses
    corecore